
Fachhochschul-Diplomstudiengang

SOFTWARE ENGINEERING

A-4232 Hagenberg, Austria

Design and Development

of a Portal-Based Tailoring System

with Slicing Techniques

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur (Fachhochschule)

Eingereicht von

Gerhard Dietrichsteiner

Betreuer: DDI Dr. Christoph Steindl, IBM Austria, Linz
Begutachter: DI (FH) Peter Kulzcycki

August 2003

Eidesstattliche Erklärung

Ich versichere, dass ich die Diplomarbeit selbstständig verfasst, keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt, mich auch sonst keiner
unerlaubten Hilfen bedient habe und diese Diplomarbeit bisher weder im In-
noch Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

Pregarten, August 2003 Gerhard Dietrichsteiner

Abstract

In this thesis we develop a portal-based prototype of a tool that is able to
tailor a software development process by using slicing techniques. The tool is
developed for IBM’s Global Services Method, but its design is flexible enough
to make it adaptable to any other process model, provided that the model is
based on the OMG’s Software Process Engineering Metamodel.

Program slicing is a program analysis technique that has been developed and
researched for many years. Applying program slicing to a new domain is an
interesting idea. An essential part of our work is to find and define analogies
between software development processes and computer programs. After the
analogies are defined, a program slicing algorithm is adapted and extended to
fit our needs.

We develop an algorithm that computes task and work product dependences
in a software development process and use this algorithm in our prototype to
supply the user with valuable information about process internal dependences,
thus supporting and simplifying the user’s decision-making when he or she
tailors a software development process.

Another part of this thesis is the discussion of our prototype’s design; especially
the structure which makes the prototype adaptable to other software develop-
ment processes and performance-related design decisions are of interest.

Zusammenfassung

In dieser Diplomarbeit wird versucht, bewährte Techniken aus dem Program
Slicing Bereich auf eine neue Domäne, nämlich die der Softwareentwicklungs-
Prozessmodelle, anzuwenden. Diese Idee stammt ursprünglich von C. Steindl,
der sich ausgiebig mit der Thematik des Program Slicings auseinander gesetzt
hat und mich während meines Praktikums bei IBM betreute.

Die Hauptidee besteht darin, dass Softwareentwicklungs-Prozessmodelle und
Computerprogramme offensichtlich Gemeinsamkeiten in ihrer Struktur aufwei-
sen. Beide beschreiben Abläufe auf genau definierte Arten und bedienen sich
dabei ähnlicher Elemente, woraus die Idee entstand, dass man Program Slicing
Algorithmen auch auf Softwareentwicklungs-Prozessmodelle anwenden könnte.

Program Slicing wird dazu verwendet, Computerprogramme (oder Teile da-
von) zu analysieren. Es kann den Entwickler in unterschiedlichen Phasen der
Entwicklung unterstützen, so z.B. beim Debuggen. Dabei wird etwa ein Slice
berechnet, welches nur die jeweilig für den Entwickler interessanten Teile des
Programmes enthält, da wichtige Zusammenhänge innerhalb des Programmes
vom Program Slicing Algorithmus analysiert werden und daher nicht relevante
Teile des Programmes einfach entfernt werden können.

Auf ein Softwareentwicklungs-Prozessmodell angewandt, könnten Program Sli-
cing Techniken dabei helfen, Zusammenhänge innerhalb des Prozessmodells auf-
zuzeigen, was wiederum den Projektleiter beim Anpassen eines Prozessmodelles
an ein konkretes Projekt unterstützen würde.

Im Laufe der Diplomarbeit werden zuerst Analogien zwischen Prozessmodellen
und Computerprogrammen gefunden und festgehalten, danach wird ein Algo-
rithmus aus dem Program Slicing Bereich an die Bedürfnisse des Prozessmodel-
les angepasst, und schließlich wird ein Prototyp einer Anwendung entwickelt, die
diese Techniken verwendet und damit das Anpassen eines Softwareentwicklungs-
Prozessmodells ermöglicht.

Als Prozessmodell wird die IBM eigene Global Services Method verwendet. Um

v

den Sinn dieser Arbeit zu erhöhen, wurde allerdings als generelle Ausgangsba-
sis das Software Process Engineering Metamodel (SPEM) der OMG gewählt.
Das Design des Prototypen war so zu wählen, dass die Anwendung später oh-
ne großen Aufwand an verschiedene Prozessmodelle angepasst werden kann,
vorausgesetzt die Prozessmodelle basieren am SPEM.

Eine weitere Anforderung an den Prototypen war, dass er am WebSphere Portal
Server laufen sollte. Die Verwendung des Portal Servers brachte einige Annehm-
lichkeiten mit sich (integrierte Benutzerverwaltung, einheitliches Design der Be-
nutzeroberfläche, strukturierter Aufbau der einzelnen Seiten, usw.), wirkte sich
allerdings auch stark auf das Design des Prototypen aus.

Foreword

Personal Motivation

During my internship at IBM I started to work on a tailoring tool for IBM’s
Global Services Method. It was really hard to get into the Global Services
Method, because of its bigness and complexity, but after this step was mastered
things turned out to be pretty interesting and fascinating. So I continued to
work within this field and did the thesis work you are currently reading.

Scientific Motivation

My advisor at IBM, Christoph Steindl, worked a lot in the area of program
slicing. Since he is Method Exponent at IBM, he is also very familiar with
the Global Services Method, thus the idea of using program slicing on the
Global Services Method was his. The main idea was to find similarities—which
apparently existed—between software development processes and conventional
programs. Applying program slicing to the new domain of software development
processes is an interesting idea and it gave us the necessary scientific motivation
to give the whole thing a try.

Acknowledgement

First of all I want to express my gratitude to Christoph Steindl, who had the
idea of applying program slicing to software development processes, contributed
so much insight and experience concerning both the Global Services Method
and program slicing, and was always a friendly and helpful colleague.

Furthermore I want to thank (in no particular order):

vii

My supervisor from the Upper Austria University of Applied Sciences in Ha-
genberg, Peter Kulczycki, for giving me a lot of valuable hints and tips in the
area of writing scientific papers and for proofreading the work.

Roland Ossmann, a true fellow, who helped me to weather through those dark
and cold winter days, spent a lot of time with me drinking good coffee—at this
point I also have to thank IBM for the really great coffee machine—much too
early in the morning, and always was ready for some fun.

Mr. Curtis, for proofreading my work and providing me with lots of excellent
English-related tips.

My girlfriend Beatrix, for backing me up and for the joy, fun, and love we had.
I know that I did not have enough time for you throughout the last months,
but I hope that we can catch up on this in the future. And I wish you the best
for completing your own studies next year!

My friends in Hagenberg—especially Stefan Ortner—for occasional variety and
diversion.

My parents Walter and Gerlinde and my two brothers Walter and Thomas for
a few days of relaxation, although there was not much time together in the last
months (and years).

Nature, for the pleasures and small miracles it presents me and all the other
people every day, and for putting me on earth in this technologically fascinating
era—although, of course, there also would have been other centuries worth
living in . . .

Thank you all.

Contents

1 Introduction 1

1.1 Intention . 1

1.2 State of the Art . 2

1.2.1 Tailoring of Process Models 2

1.2.2 Program Slicing . 3

1.3 Slicing and Process Models . 3

1.4 Preview of Results . 3

1.5 Outline . 4

2 Background Information 5

2.1 Software Engineering Process Models 5

2.1.1 Introduction . 5

2.1.2 The Software Process Engineering Metamodel 7

2.1.3 The Rational Unified Process 11

2.1.4 The IBM Global Services Method 11

2.2 Program Slicing . 12

2.2.1 Basics . 13

2.2.2 Control Flow and Data Flow 13

2.2.3 Computation of Reaching Definitions 16

2.2.4 Program Slicing Types . 19

CONTENTS ix

2.2.5 Slicing Algorithms . 20

2.3 Portal Servers . 21

2.3.1 “Portal” . 22

2.3.2 Java Standards for Portal Applications 22

2.3.3 Portal Server Basics . 23

3 Solution 27

3.1 Detailed Intentions . 27

3.1.1 Using Program Slicing . 27

3.1.2 A Portal-Based Prototype 28

3.1.3 An Easily Alterable Prototype 29

3.2 Using Slicing Techniques with Process Models 29

3.2.1 Analogies between Programs and Process Models 29

3.2.2 An Adapted Algorithm 31

3.3 The Application . 36

3.3.1 Architecture Overview . 38

3.3.2 Functionalities . 38

4 Implementation of the Prototype 40

4.1 Design . 40

4.1.1 First Attempts . 40

4.1.2 Background Information 41

4.1.3 Graphical User Interface 41

4.1.4 Database Design of the Tailoring Extension 43

4.1.5 Application Design Overview 45

4.1.6 Application Design Details 49

4.2 Application Test and Usage . 57

CONTENTS x

5 Conclusion 58

5.1 Intention and Solution . 58

5.2 Advantages and Disadvantages 58

5.3 Application Area . 59

5.4 Future Work . 59

5.5 Availability of this Work . 60

Chapter 1

Introduction

This chapter introduces the thesis and provides an overview of it. Section 1.1
explains the thesis’ goal. The state of the art in the fields of tailoring process
models and program slicing is briefly described in sec. 1.2 on the next page.
Afterwards sec. 1.3 on page 3 introduces the idea of slicing software development
processes. Section 1.4 on page 3 gives a short preview of the results that were
achieved within this thesis. Finally sec. 1.5 on page 4 shows an outline of the
whole work.

1.1 Intention

The objective of this thesis is to develop a web-based prototype of a tool that
is able to tailor (sec. 1.2.1 on the next page describes this term) a software
development process by using program slicing techniques. The web-based pro-
totype runs on a portal server (see sec. 2.3 on page 21) and can be used to
tailor, for example, IBM’s Global Services Method (for information on what
has been implemented in the prototype see sec. 1.4 on page 3). It should be
possible—without too much effort—to adapt the prototype to fit any other de-
velopment process, provided that the process implements the OMG’s Software
Process Engineering Metamodel (see sec. 2.1.2 on page 7 for further details).
The main aim of the prototype is to simplify the tailoring process by pointing
out interrelationships of the software development process, which the user nor-
mally hardly can see. To compute these interrelationships, an attempt to apply
program slicing techniques (see sec. 2.2 on page 12) to software development
processes is made.

1.2 State of the Art 2

1.2 State of the Art

This section describes the current state of the art in the areas of tailoring process
models and program slicing.

1.2.1 Tailoring of Process Models

When we use the term “tailoring” in the context of software development
processes, we mean the process of adapting process models to the needs and
requirements of specific projects. In [Kruchten, 2000], P. Kruchten uses the
term “configuring a process” to distinguish between two types: configuring an
organizationwide process and configuring a project-specific process. For the Ra-
tional Unified Process (RUP), configuring an organizationwide process means
to take the RUP as it is delivered and adapt it according to the organization’s
practices and needs. This kind of configuration is typically done only once
and for all kinds of projects of the whole organization. Configuring a project-
specific process means the same as “tailoring” a process: process engineers
take the organizationwide process and refine it for a given project; therefore,
tailoring needs to be done for every single project. In the RUP, such a project-
specific process is described as a development case. Another term mentioned in
[Kruchten, 2000] is implementing a process model, which means the introduc-
tion of a process in a company; this must be done before the first process-based
project starts and usually requires multiple steps, depending on the company’s
size.

IBM’s Global Services Method (GSM) is an organizationwide software develop-
ment process with various types of processes (called engagement models) that
are designed to fit the requirements of different project types (e.g., an e-business
project). Each of these engagement models was designed to be applicable to
big projects with a high number of collaborators. In small projects the number
of collaborators is much smaller (e.g., only five to eight), thus making the usage
of a big process model an unproductive overhead. In order to avoid this, an
engagement model is adapted to a given project; the main steps are:

• Choosing the roles which are needed in the project.

• Selecting the work products that will be created.

• Removing unnecessary tasks from the project.

1.3 Slicing and Process Models 3

Adapting an engagement model is already a software supported task. Anyway,
there was a wish for more support: the tailoring tool should provide useful
context information. Let us take a look at an example: you decide to remove a
task from a project. In that case it would be great if the tailoring tool informed
you about work products that are included in the project but not produced
anywhere any longer. Then you could decide to remove these work products,
too, or add the task again. If the tool does not show such dependences, tailoring
will be hard. The prototype developed with this thesis uses program slicing
techniques to compute such dependences.

1.2.2 Program Slicing

Program slicing is—as its name implies—mainly used to analyze programs,
i.e., source code, as desribed in sec. 2.2 on page 12. Anyway, there have also
already been attempts to apply slicing techniques to other application areas.
An example is the slicing of books and texts1, where the text can be split
into slices which contain only the information that the reader is interested in.
Applying program slicing techniques to software development processes is a new
idea that was originally born by C. Steindl, who worked a lot in the field of
slicing object-oriented programming languages.

1.3 Slicing and Process Models

Program slicing is used to analyze source code; it can produce slices which
contain only the information that the programmer is currently interested in.
As mentioned in sec. 1.1 on page 1, the aim of this thesis is to apply such
program slicing techniques to the area of software development processes.

The main idea is to find analogies between programs and process models. This
should be possible, because both programs and process models describe a se-
quence of steps; in programs the steps are statements and in process models
they are tasks. After similarities have been found and defined, program slicing
can be used with process models (see sec. 3.2 on page 29) in a similar way as it
is used with programs.

1for more information see: http://www.slicing-infotech.de/en/index.php

1.4 Preview of Results 4

1.4 Preview of Results

We defined analogies between programs and software development processes
and implemented a portal-based prototype, which uses an adapted program
slicing algorithm for computing slices (see sec. 3.2 on page 29). The slices
are used to extract desired information about interrelationships of the process
model.

The prototype uses IBM’s Global Services Method as a process model and can
partially tailor it to given projects. For complete tailoring some functionalities
are missing (see sec. 5.4 on page 59). The following goals have been achieved
with the prototype:

• A flexible design has been created, which allows the prototype to be
adapted to all software development processes that implement the Soft-
ware Process Engineering Metamodel.

• The prototype is portal-based, thus it possesses the typical advantages of
web-based applications (see sec. 3.3 on page 36).

• It provides the process model’s content in a structured manner and allows
it to be browsed.

• Projects and collaborators can be managed, and tailoring of tasks can be
done (this tailoring part uses slicing techniques).

1.5 Outline

Chapter 1 briefly introduces the thesis and provides an overview.

Chapter 2 gives background information about all thesis-relevant topics, as
there are: software process models, program slicing, and portal servers.

Chapter 3 first exactly describes the problem, shows how program slicing is
applied to software development processes, and finally introduces the prototype.

Chapter 4 deals with the detailed design of the prototype and gives information
about how the prototype has been tested and what its weaknesses and strengths
are.

Chapter 5 gives a short repetition of the thesis’ intention and the developed so-
lution. After this, advantages and disadvantages are discussed, the application
area is defined, and ideas for future work are collected.

Chapter 2

Background Information

This chapter deals with topics that provide relatively important background
knowledge for this thesis. It is intended to support the reader who might not be
familiar with these themes. The first two topics—Software Engineering Process
Models (sec. 2.1) and Program Slicing (sec. 2.2 on page 12)—are really essential
because the thesis directly uses them. The third topic—Portal Servers (sec. 2.3
on page 21)—is not that essential for the thesis itself; however, it is important
for a better understanding of the design and implementation parts.

2.1 Software Engineering Process Models

This section first introduces background knowledge about what software engi-
neering process models are (sec. 2.1.1). Section 2.1.2 on page 7 then explains
OMG’s Software Process Engineering Metamodel (SPEM). Based on the SPEM,
two concrete process models are briefly presented afterwards. The first one is
the widespread Rational Unified Process (sec. 2.1.3 on page 11) and the sec-
ond one is IBM’s Global Services Method (sec. 2.1.4 on page 11), which the
implementation of this thesis works with.

2.1.1 Introduction

“Different software development projects fail in different ways—and, unfortu-
nately, too many of them fail . . .” [Kruchten, 2000]. One of the biggest problems
is that many software development companies do not use any defined process
model to develop their software; instead, decisions are often made in an undoc-

2.1 Software Engineering Process Models 6

umented ad-hoc manner. In general, the major problems with software devel-
opment are not technical problems, but management problems (cf. [SEI, 1995]).

According to [Kruchten, 2000] the main causes of development problems are:

• Ad hoc requirements management

• Ambiguous and imprecise communication

• Brittle architectures

• Overwhelming complexity

• Undetected inconsistencies in requirements, designs, and implementations

• Insufficient testing

• Subjective assessment of project status

• Failure to attack risk

• Uncontrolled change propagation

• Insufficient automation

The consequences are:

• Inaccurate understanding of end-user needs

• Inability to deal with changing requirements

• Poor software quality

• Team members in each other’s way, making it impossible to reconstruct
who changed what, when, where, and why

• And so forth . . .

Software engineering process models address many of those problems and there-
fore support the development of software in project teams. Especially in big
projects with many collaborators, a good process model is important in order
to increase the chance of achieving the desired success. Additionally it is a good
idea to use the best practices—these are practices which are commonly used by
successful organizations—of software development (if the process model does
not already specify them), such as:

2.1 Software Engineering Process Models 7

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

4. Visually model software

5. Continuously verify software quality

6. Control changes to software

A software development process has four roles, namely to [Kruchten, 2000]:

1. Provide guidance as to the order of a team’s activities.

2. Specify which artifacts should be developed and when they should be
developed.

3. Direct the tasks of individual developers and the team as a whole.

4. Offer criteria for monitoring and measuring the project’s products and
activities.

2.1.2 The Software Process Engineering Metamodel

The Object Management Group (OMG) released the first version of the Soft-
ware Process Engineering Metamodel Specification (SPEM) in November 2002.
We give an overview of the SPEM in this section, because, first of all, IBM’s
Global Services Method (GSM) is based on this metamodel and we used the
GSM for the implementation of the slicing prototype, and secondly our proto-
type can be adapted to other process models which are based on the SPEM. If
you are interested in more detailed information about the SPEM, we refer you
to the specification [OMG, 2002].

The SPEM defines a template for software development processes. It is located
at level M2 of OMG’s four-layered architecture of modeling (see fig. 2.1 on the
next page). Concrete process models—like IBM’s GSM, the Rational Unified
Process, DMR Macroscope, and Fujitsu SDEM—are on level M1, which means
that they use the metamodel defined at level M2. If one of the process models
of level M1 is used in a real-world project, this happens at level M0.

The SPEM is formally defined as an extension of a subset of the Unified Mod-
eling Language (UML). The UML is defined by a metamodel, which is itself

2.1 Software Engineering Process Models 8

M3

M2

M1

M0

MetaObject Facility

Process Metamodel

Process Model

Performing Process

Figure 2.1: Four-layered architecture of modeling as defined by the OMG.

defined as an instance of the MetaObject Facility (MOF) metametamodel. This
MOF metametamodel is located at level M3 in the architecture of modeling (see
fig. 2.1).

The purpose of the SPEM is to support the definition of software development
processes. It solely addresses the domain of process description and—as a
metamodel—does not contain any content itself.

Conceptual Model

[OMG, 2002] describes the main idea of the Software Process Engineering Meta-
model as follows:

At the core of the Software Process Engineering Metamodel (SPEM)
is the idea that a software development process is a collaboration
between abstract active entities called process roles that perform
operations called activities on concrete, tangible entities called work
products.

Figure 2.2 on the next page shows the conceptual model and the coaction of
the above-mentioned terms.

2.1 Software Engineering Process Models 9

Role WorkProduct

Activity

1 0..*

1

0..*

0..* 0..*

0..*

isResponsibleFor

0..*performs

Figure 2.2: SPEM conceptual model: Roles, Work Products, and Activities.

WorkDefinition0..*subWork

parentWork

0..*

Activity

ProcessPerformer

Step

ProcessRole

WorkProduct

WorkProductKind0..* 1
{ordered}

1 0..*

0..*
0..*

0..*
0..1

0..*

1

Figure 2.3: Marginally simplified version of the SPEM process structure shown
in [OMG, 2002, sec. 7].

Process Structure

A simplified figure of the process structure defined in [OMG, 2002] is shown in
fig. 2.3. Let us take a look at the figure’s terms in order to understand this
process structure:

WorkProduct and WorkProductKind Work products are anything that
is produced, consumed, or modified by a process. This can be different kinds
of documents, source code, models, and so on. Work products are assigned to
work product kinds which describe various types of work products, such as a
Text Document or an UML Model.

2.1 Software Engineering Process Models 10

WorkDefinition Work definitions are pieces of work which the progression
of the process can be described with. Therefore work definitions form a hierar-
chical structure by using some kind of recursive composition, which means that
work definitions consist of other work definitions and so on (see the subWork -
parentWork relation in fig. 2.3 on the previous page). The development process
can define multiple levels of work definitions. On the lowest level are activities,
which represent the smallest pieces of work. On higher levels there are work
definitions like phases, etc.—the names of these work definition types are not
defined within the SPEM, resulting in differing names in SPEM implementa-
tions; also the number of levels is not defined and can vary. Furthermore, work
definitions are related to their used work products through activity parame-
ters1. These activity parameters define whether the work products are used as
input or output.

Activity and Step Activity is the main subclass of WorkDefinition. Activi-
ties can be found on the lowest level of the hierarchical process structure. They
describe pieces of work which can be performed by one ProcessRole. Although
activities are located on the lowest level of the hierarchical process structure,
they may themselves consist of even smaller, atomic elements called steps.

ProcessPerformer and ProcessRole The ProcessPerformer class defines a
performer for work definitions that do not have a more specific owner. Process-
Role is a subclass of ProcessPerformer and defines specialized roles (e.g., An-
alyst, Technical Writer, etc.), that are responsible for specific work products,
and that perform and assist in specific activities.

Terminology

SPEM implementations (IBM’s GSM, and so on) do not necessarily have to
use the same terminology as the SPEM does, but if the terminology differs,
a correspondence list must be provided. In the case of IBM’s Global Service
Method, the terminology also partially differs a bit. Table 2.1 on the next page
shows a correspondence list for IBM’s GSM and the Rational Unified Process.

1this attribution is not shown in fig. 2.3 on the preceding page, because the corresponding

figure in [OMG, 2002] also does not show this connection.

2.1 Software Engineering Process Models 11

SPEM RUP GSM
ProcessRole Role Role
Activity, Activity, Task
Step Step
WorkProduct, Artifact Work Product
Information-Element Description
Discipline Discipline Domain
Lifecycle Process Engagement Model
Phase Phase Phase
Iteration Iteration Iteration
Guidance Guidelines, Technique

ToolMentors,
Templates

Table 2.1: Translation table for terms of the Software Process Engineering
Metamodel (SPEM), IBM’s Global Services Method (GSM), and Rational Uni-
fied Process (RUP).

2.1.3 The Rational Unified Process

We want to mention the Rational Unified Process (RUP) here, because it is a
famous implementation of the SPEM. In [Kruchten, 2000] it says:

The Rational Unified Process is a software engineering process. It
provides a disciplined approach to assigning tasks and responsibil-
ities within a development organization. Its goal is to ensure the
production of high-quality software that meets the needs of its end
users within a predictable schedule and budget.

The RUP is available in a web-based form, which can easily be used in intranets.
It is tailorable and fits the requirements of various kinds of projects. For further
information on the Rational Unified Process we refer to [Kruchten, 2000].

2.1.4 The IBM Global Services Method

We used IBM’s Global Services Method (GSM) for the implementation of this
thesis work. As the Rational Unified Process, the GSM is also an implementa-
tion of the SPEM. We give an introduction to the basic structure and terms of
the GSM in this section.

2.2 Program Slicing 12

Engagement Model

Phase P1

Phase P2

Activity A1

Activity A2

Task T1

Task T2

Task T3

Task T4

Activity A3 Task T5

Figure 2.4: Structure of an engagement model of IBM’s Global Services
Method.

Unlike the RUP, the GSM provides a broad range of different processes, called
engagement models. Each of these engagement models focuses on different kinds
of projects (e.g., e-business projects). Figure 2.4 shows how an engagement
model is structured into phases, activities, and tasks. Mind that the GSM’s
tasks are confusingly called activities in the SPEM.

Tasks have perform roles and assist roles assigned, take work products as input,
and produce work products as output. Collaborators of a project are assigned
to one or more roles and the roles specify which tasks each project member has
to fulfill.

Implementation relevant details on the GSM are introduced in chapter 4 on
page 40.

2.2 Program Slicing

In this section we give a short overview of what Program Slicing is (sec. 2.2.1
on the following page) and how slices can be computed (from sec. 2.2.2 on the
next page to sec. 2.2.5 on page 20). Many of the explanations follow what is
written in [Steindl, 2000], especially because [Steindl, 2000] includes a broad
introduction to program slicing based on various papers and articles.

2.2 Program Slicing 13

2.2.1 Basics

In [Steindl, 2000, sec. 1.1] a short but meaningful introduction to program slic-
ing is given:

Program slicing is a program analysis and reverse engineering tech-
nique that reduces a program to those statements that are relevant
for a particular computation. Informally, a slice provides the an-
swer to the question “What program statements potentially affect
the value of variable v at statement s?”

Mark Weiser introduced program slicing, because he found out that program-
mers always had some abstractions in mind when they were debugging (cf. to
[Weiser, 1984]). Programmers usually search for parts of the program result-
ing in an erroneous statement s, by following dependences from s backwards.
The statements found in this way influence s either because they decide if s

is executed at all (control dependence) or because they define a variable which
is used by s (data dependence). Especially in modern programming languages,
which support advanced concepts as object oriented programming, extracting
these parts from a program just by taking a look at the source code can be very
hard.

This leads us to why one of the most popular application areas of program
slicers is supporting programmers during the debugging process: program slic-
ing perfectly supports humans in debugging programs, because it has the ability
to reduce the complexity of the involved source code. If the programmer knows
that there is something wrong with variable v at a specific location in the source
code, he or she can use a program slicer to compute a slice with variable v as
starting point. This results in a shortened source code part that is still complete
in the context of variable v, which makes it much easier for the programmer to
find potential bugs.

Other application areas, where program slicing can be used to assist the pro-
grammer, are program integration, software maintenance, testing, and software
quality assurance.

2.2.2 Control Flow and Data Flow

A slice of a program can be influenced by two kinds of dependences: control
dependence and data dependence. Most program slicers need to analyze both

2.2 Program Slicing 14

Node current = head;

int counter = 0;

while(current != null) {

if(current.isActive())

counter++;

current = current.getNext();

} // while

Figure 2.5: A simple piece of source code.

control and data dependences to compute useful slices. We describe control
flow and data flow in a compact form; if you need further information, see
[Steindl, 2000] and the sources that are mentioned there.

Control Flow

High-level programming languages use control structures (such as if, while,
and return) to define the flow of control within a program. For analyzing
control dependences, program slicers use control flow graphs, which have to be
computed first. Control flow graphs consist of nodes which are connected by
directed edges. Nodes are basic blocks, which means that there is no choice of
different flow possibilities. Basic blocks contain sequences of statements that
are executed completely or not at all. The directed edges define the flow of the
program: e.g., there is an edge from node A to node B if control can flow from
block A to block B. Additionally, edges can be labeled T or F depending on
whether their origin node (e.g., an if statement) evaluates to true or false. A
control flow graph always starts at a node labeled START and ends with a block
labeled STOP. Each block in between has to be reachable from START and
must contain a path to STOP. Figure 2.6 on the next page shows the control
flow graph of the short and simple piece of code of fig. 2.5.

Data Flow

Most variables of a program change their values several times during runtime.
Data flow describes where the value of a variable may “flow” to, i.e., which parts
of the program can be affected by the variable’s definition. Data dependence is

2.2 Program Slicing 15

START

Node current = head
int counter = 0

current != null

current.isActive()

counter++

counter = counter.getNext()

STOP
F

T

T
F

Figure 2.6: Control flow graph of the source code of fig. 2.5 on page 14.

defined as follows: node U is data dependent on node D if the following conditions
are true (cf. [Steindl, 2000, sec. 2.3]):

1. Node D defines variable x.

2. Node U uses x.

3. There is no possibility of an intervening definition of x on all paths be-
tween node D and node U.

Node D is a reaching definition for node U if node U is data dependent on node
D. Let us take a look at an example to illustrate data flow and data depen-
dences; fig. 2.7 on the following page shows a short function which calculates
the greatest common divisor of two numbers. The data dependence graph of
this function can be viewed in fig. 2.8 on page 17 (this function was taken from
[Steindl, 2000]2).

2[Steindl, 2000] uses a different notation of the function, but it is based on the same algo-

rithm.

2.2 Program Slicing 16

int gcd(int u, int v) {

int t;

do {

if(u < v) {

t = u;

u = v;

v = t;

} // if

u = u % v;

} while(u != 0);

return v;

} // gcd

Figure 2.7: A function which computes the greatest common divisor of two
numbers.

2.2.3 Computation of Reaching Definitions

This section takes a look at how reaching definitions can be computed. We only
show the very basics here, complete program slicing has to face advanced prob-
lems such as arrays, record fields, etc. (for further details see [Steindl, 2000]).

Before starting to compute reaching definitions we need to know used variables
and defined variables of each statement in the program. A variable is used in
a statement if its value is used. For example the statement a = b + c uses
the variables b and c and defines variable a. There are two possibilities for a
variable to be defined: the first one unambiguously assigns a new value to the
variable, which is also called killing definition because the variable is assigned a
new value for sure. The second one is an ambiguous assignment, which means
that it is not sure if the variable gets a new value or not. This kind of definition
is called non-killing definition. An example would be a procedure call with a
call-by-reference parameter, where it is not sure if the procedure assigns a new
value to the variable or not.

At this point we have to introduce some new terms again. First of all, each
statement of a program is assigned a label to clearly identify it. Then we can
define the following terms:

2.2 Program Slicing 17

START

initial u initial v do return v STOP

u < v

t = u u = v v = t

u = u % v u == 0

data dependence

Figure 2.8: Data dependence graph of the source code of fig. 2.7 on the previous
page.

Definition set Each variable x has a definition set which contains the labels
of all statements that define x (both killing and non-killing definitions).

Gen set and kill set Each statement S has a gen set and a kill set. The gen
set contains the labels of all definitions that are generated by S. The kill
set contains the labels of all definitions that are killed by S.

In set and out set Each statement S has an in set and an out set. The in
set contains the labels of all definitions that reach S. The out set contains
the labels of all definitions that leave S.

The algorithm for the computation of reaching definitions consists of two iter-
ations:

1. In the first iteration the definition set of each variable and the gen and
kill sets of each statement are computed.

2. The second iteration computes the reaching definitions in a syntax di-
rected manner and inserts links from the usage nodes of variables to all
its reaching definitions.

Computing the gen and kill sets and the reaching definitions requires us to solve
the data flow equations for all statements of the program (we only take a look

2.2 Program Slicing 18

d: a = b + c

in(S)

out(S)

S

in(S)

out(S)

Figure 2.9: Scheme of a killing assignment.

at the data flow equations that are relevant to this thesis; for more information
we refer to [Steindl, 2000]).

Data Flow Equations for Assignments

An assignment to a variable generates a definition. If the assignment is am-
biguous, it is a non-killing definition (empty kill set). Otherwise it is a killing
definition (non-empty kill set). Figure 2.9 illustrates a killing assignment which
results in the following data flow equations:

• gen(S) = {d}

• kill(S) = DefinitionSet(a) - {d}

• out(S) = gen(S) ∪ (in(S) - kill(S))

Each assignment is given a label; in case of fig. 2.9 the assignment got the label
d. The gen set contains only this label d because the statement generates the
definition for variable a only. All previous definitions of a are killed, thus the
kill set of the statement consists of a’s definition set minus the current definition
d (which is—of course—not killed). Finally the out set contains all definitions
that are generated by S (i.e., gen(S)) plus all definitions that reach S (i.e., in(S))
and are not killed by S (not in kill(S)).

Data Flow Equations for Statement Sequences

If two or more statements are executed in a sequence, their effects can be
combined. Figure 2.10 on the following page shows the scheme of a sequence of
two statements. The corresponding data flow equations are:

2.2 Program Slicing 19

in(S1)

out(S2)

S

in(S)

out(S)

S1

S2

out(S1) = in(S2)

Figure 2.10: Scheme of a sequence of two statements.

• gen(S) = gen(S2) ∪ (gen(S1) - kill(S2))

• kill(S) = kill(S2) ∪ (kill(S1) - gen(S2))

• in(S1) = in(S)

• in(S2) = out(S1)

• out(S) = out(S2)

Statement S generates everything that S2 generates (i.e., gen(S2))—because
there is no chance that those definitions are killed—plus everything of what S1
generates and which is not killed by S2 (i.e., gen(S1) - kill(S2)). The statement’s
kill set is computed in a similar way: it contains everything that S2 kills (i.e.,
kill(S2)) plus the killing definitions of S1 which are not defined by S2 again
(i.e., kill(S1) - gen(S2)).

2.2.4 Program Slicing Types

Program slicing can be divided into different types: static slicing versus dy-
namic slicing, backward slicing versus forward slicing, and intraprocedural slic-
ing versus interprocedural slicing. This section briefly describes the differences
between these types.

2.2 Program Slicing 20

Static Slicing and Dynamic Slicing

Static slicing analyzes the program’s source code without knowing anything
about a particular runtime state. So, variables do not have concrete values.
Thus, since static slices have to take all possibilities of program flow into con-
sideration, the generated slices can be quite large. In contrast to static slicing,
dynamic slicing knows the values of variables in the context of a particular ex-
ecution of the program. That is why dynamic slicing produces smaller slices
and is more precise than static slicing.

Backward Slicing and Forward Slicing

These two types have pretty self-explanatory names: backward slices contain
all parts of the program that might have influenced the variable at the selected
statement. Forward slices contain all parts of the program that might be influ-
enced by the variable.

Intraprocedural Slicing and Interprocedural Slicing

Intraprocedural slicing concentrates on one single procedure and does not take
calls of other procedures into account. Interprocedural slicing analyzes the
interactions between procedures (a procedure can be called multiple times from
different places in the program, etc.).

2.2.5 Slicing Algorithms

Slicing algorithms evolved over time; early slicing algorithms saw slicing as a
data flow problem, later slicing was seen as a graph-reachability problem. We
give a short introduction to a data-flow-based algorithm here (take a look at
[Steindl, 2000] if you need more detailed information). Chapter 3 on page 27
shows how such an algorithm can be used with process models.

Slicing as a Data Flow Problem

This is the initial method which M. Weiser used in the early days of program
slicing. He took a control flow graph as intermediate representation for his slic-
ing algorithm. At each node the data flow information of all relevant variables
had to be computed, which made it possible to extract a correct slice. The

2.3 Portal Servers 21

algorithm for computing the sets of relevant variables for the slice of node N

and variables V worked as follows (cf. to [Steindl, 2000, sec. 3.1]):

1. Initialize the relevant sets of all nodes to the empty set.

2. Insert all variables of V into relevant(N).

3. For N’s immediate predecessor M, compute relevant(M) as:

a) relevant(M) = relevant(N) - def(M)

b) if relevant(N) ∩ def(M) 6= {} then

c) relevant(M) = relevant(M) ∪ ref(M)

d) include M into the slice

e) end

4. Work backwards in the control flow graph, repeating step 3 for M’s imme-
diate predecessors until the entry node is reached or the relevant set is
empty.

Explanation of step 3:

a) Exclude all variables that are defined at M.

b) If M defines a variable that is relevant at N.

c) Include the variables that are referenced at M.

See table 2.2 on page 25 for an example of how this algorithm works. All state-
ments that are part of the computed slice have bold and italic node numbers.

For structured programs—with conditions, loops, etc.—the algorithm must be
extended. We do not describe these extensions here because they are not used
in the current implementation (see chap. 3 on page 27).

2.3 Portal Servers

Using a portal server as a platform for the application has been a given fact since
the very beginning of our work. The tailoring tool was supposed to be a web
application based on the IBM WebSphere Portal Server. In this section we will
take a look at the term “portal” (see sec. 2.3.1 on the following page), possible
standards and current implementations (see sec. 2.3.2 on the next page), and the
very basics behind implementing applications for a portal server (see sec. 2.3.3
on page 23).

2.3 Portal Servers 22

2.3.1 “Portal”

The word “portal” is one of those “overloaded” words that can mean anything
and nothing at the same time. In reality there are a lot of different portals with
basic similarities. The term portal has evolved over time resulting in more or
less slightly different meanings. The first portals were simple search engines or
collections of links. Both types offered their visitors one single place for entering
the Internet and finding information they were looking for.

Today there are different types of portals with different functions; examples are
Personal Portals, B2B Portals, B2C Portals, Enterprise Information Portals,
and so forth. Like the early portals, they also try to form some kind of central
point at which users find as much desired information as possible. Users can
customize the contents of such portals according to their own priorities and
needs. And the portals customize available content depending on previous user
actions and behavior; this is called “personalization.”

Developing extensive portals means a lot of work and headaches. To prevent this
and to make common tasks easier, so-called portal servers were invented. IBM
WebSphere Portal Server, for example, is one of the Java-based portal servers;
the following sections (see sec. 2.3.2 and sec. 2.3.3 on the following page) deal
with such servers. Of course, there are also other—non-Java-based—portal
server systems available, like the Microsoft SharePoint Portal Server ; however,
they have no relevancy to this thesis.

2.3.2 Java Standards for Portal Applications

Currently there are quite a few Java-based portal servers on the market (from
IBM, BEA Systems, Oracle, the Apache Software Foundation, and others).
Most of these servers provide comparable functionality although there is no
standard for portals. Java-based portals are based on a J2EE compliant appli-
cation server. They are constructed with portlets, which are much like servlets
(see sec. 2.3.3 on the next page for further details).

Portlets are not part of the standard Java platform; however, if things work out
they will become an official extension to the J2EE 1.4 platform soon. Let us take
a look at the history of this standardization process. The origin of the Portlet
API is located at the Apache Software Foundation (cf. [JCP, 2003a, sec. 2.5]).
They invented the first versions and built the public available Jakarta JetSpeed
portal server [Apache, 2003]. Later IBM submitted a Java Specification Re-
quest [JCP, 2003a] for standardizing the “Portlet API” and a little bit later

2.3 Portal Servers 23

Sun Microsystems also submitted a similar request for a specification called
“Java Portlet Specification” [JCP, 2003b]. Both requests must have been is-
sued in late 20013. In January 2002 they were withdrawn and replaced by a
new Java Specification Request [JCP, 2003c], “Portlet Specification,”. IBM and
Sun Microsystems together took on the leadership role of this request, which is
supported by a broad expert group of 19 well-known companies such as BEA
Systems, Borland Software Corporation, SAP AG, Oracle, and others. Since
the community review process was finished recently, the first version (1.0) of
the Portlet Specification has been released in late August 2003. It was not
possible to take this specification into consideration within this thesis, because
of its recent release.

It is hoped that all of the portal server providers will implement the Portlet
Specification in the next versions of their portal servers in order to become
specification compatible. One and the same portlet will then work on many
servers without needing to be modified.

2.3.3 Portal Server Basics

In this section we want to show what portlets are and how they are used to build
portal applications for the IBM WebSphere Portal Server. Although there is
currently no official specification for portlets, as shown in sec. 2.3.2 on the
preceding page, most of the concepts which we are going to show here should
be valid for all portal servers. For further information on these concepts, see
IBM’s Portlet Development Guide [Buckner et al., 2003].

According to the latest specification request [JCP, 2003c, sec. 2.1], “Portlets are
web components—like Servlets—specifically designed to be aggregated in the
context of a composite page. Usually, many Portlets are invoked in the single
request of a Portal page.” Apart from minor differences in the environment,
one main difference between portlets and servlets is that portlets generate only
a fragment of a page and not whole pages as servlets do. That means that
the programmer has to be careful not to use page-level tags like <html> in a
portlet’s output. Such portlet output would result in wrecked pages on the
client’s screen.

The first two basic features of portlets that we want to introduce here are portlet
states and portlet modes. Within a webpage, portlets are often rendered in the
way typical windows are in Microsoft Windows operating systems. Like a win-
dow, they can be in three different states: normal, maximized, and minimized.

3Unfortunately it was not possible to find out the exact date when the requests were made.

2.3 Portal Servers 24

For example, if a user maximizes a portlet, the page will be reloaded and there
will be only the maximized portlet filling up the whole page.

A portlet can operate in three possible modes. The normal mode is the view
mode, where the portlet shows the information that it is supposed to show. In
edit mode the user can set user specific, persistent settings for the portlet, e.g.,
how much information he or she wants the portlet to show. Finally, the user
can switch the portlet to help mode in order to get some hints on how to use
the portlet. The only mode that a portlet has to support is the view mode. All
other modes can be implemented optionally.

A portal’s content is hierarchically structured by the use of “page-groups.”
Page-groups consist of page-groups or pages. Pages finally contain the portlets
that are used for creating the pages’ content. Portlets that are located on the
same page can communicate with each other by sending simple messages. One
message can be received by one or more other portlets (see fig. 2.11 on the next
page).

Figure 2.12 on page 26 shows different variations of a portlet during its life-
cycle. We decided to show a more general life-cycle than the one described
in [Buckner et al., 2003]4. At first a portlet class file is generated by a Java
compiler. At runtime the class file is deployed to a portal server. If necessary,
the portal server creates a portlet instance. When the portlet is placed on a
page a portlet window is created. The portlet window can be adjusted to its
page by page-specific settings. Portlets can store user-specific data, so that
the user is able to customize it to his or her personal needs. To accomplish
this, the portlet window is parameterized by a persistent object for each user.
Additionally, for each login of a user, a portlet session object is created. This
session object stores transient data for the portlet window.

4[Buckner et al., 2003] describes a more complicated, proprietary life-cycle model that will

presumably not be part of the portlet specification.

2.3 Portal Servers 25

n statement ref(n) def(n) relevant(n)

1 b = 1 b

2 c = 2 c b

3 d = 3 d b, c
4 a = d d a b, c
5 d = b + d b, d d b, c
6 b = b + 1 b b b, c
7 a = b + c b, c a b, c
8 print(a) a a

Table 2.2: Computation of a slice for statement 8 (node N = 8) and variable a

(variables V = {a}) plus computation of the relevant sets.

Portal Page
Portlet A

Portlet B

Portlet C

Portlet D

Figure 2.11: A portal page with portlets. The portlets communicate with each
other by sending messages. In the example, portlet A sends out a message M1
which is received by the portlets B, C, and D. Another message M2 is sent from
portlet B and received by portlet C only.

2.3 Portal Servers 26

Runtime

Portlet Source
Code

Portlet Class File

compile

Development

Portlet Class and
Instance

deploy and load

Portlet Window

place on page

Persistently
Parameterized

Portlet
Transiently

Parameterized
Portlet

for each user for each login of a user

Figure 2.12: The life-cycle of a portlet.

Chapter 3

Solution

In this chapter we discuss our solution. First the intentions of our work are
detailed (sec. 3.1), then we describe how program slicing has been applied to a
Software Process Engineering Metamodel based software development process
(sec. 3.2 on page 29), and finally we introduce the application that resulted
from our work (sec. 3.3 on page 36). Chapter 4 on page 40 takes a look at
implementation details of the application.

3.1 Detailed Intentions

According to sec. 1.1 on page 1 the main goal is to create a web-based prototype
for tailoring software development processes. The most important requirements
on the prototype are:

• The prototype should use program slicing techniques for computing slices.

• The application should be portal-based (which implies that it has to be
web-based).

• The application should be easily alterable, so that it can be used with
various process models.

In the following we go through these requirements and explain them.

3.1.1 Using Program Slicing

The prototype is supposed to provide usefull information about interrelation-
ships within a software development process, supporting the user in his or her

3.1 Detailed Intentions 28

decision-making. The interrelationships of the kind “task A depends on task
B because B produces a work product which A requires as input” have to be
computed on the fly, because they change depending on the current tailoring
state of the process model (e.g., task B could be removed).

For computing these interrelationships and dependences, the prototype uses
program slicing techniques. Program slicing was originally used for analyzing
pieces of source code (sec. 2.2 on page 12 gives more details on program slicing).
C. Steindl had the idea of applying program slicing techniques to software
development processes, because he saw that there were some analogies between
process models and programs. In sec. 3.2 on the next page we describe which
analogies we have found and how program slicing has been applied to process
models.

3.1.2 A Portal-Based Prototype

My employer wanted the prototype to be portal-based; IBM’s WebSphere Portal
Server is used as a platform for it. In fact, applying some program slicing
techniques to a piece of a process model would not have been such a great
challenge. The aspect of implementing the whole prototype as a web-based
application strongly influenced the prototype’s design and layout (the design is
discussed in detail in sec. 4.1 on page 40).

The reasons for choosing a portal server as a platform are the usual advantages
of web applications plus the advantages a portal server brings about. Typical
advantages of web applications are:

• usage of thin clients (does not need to install anything on the clients since
a web browser can be assumed to be standard)

• can be easily used in intranets or the Internet

• is easily accessible from anywhere

• application logic is completely located on a central server (in our case:
WebSphere)

In addition to that, the usage of a portal server brings further advantages:

• built in user management

• persistent storage of preferences for each user

3.2 Using Slicing Techniques with Process Models 29

• consistent GUI (which additionally can be changed very easy without
needing to modify any code)

• usage of portlets results in a modular structure of the GUI and the logic
that lies behind

Of course web applications do not only provide advantages. Disadvantages
and how they affected the prototype’s design are also discussed in sec. 4.1 on
page 40.

3.1.3 An Easily Alterable Prototype

Another challenge was to create an alterable application design, so that the
prototype can be adapted to other software development processes without too
much effort. Developing an appropriate application design was one of the most
demanding tasks of the whole work. In sec. 4.1 on page 40 we take a look on
the final design and we also describe how the design evolved over time.

The problem with different software development processes is that, although
they are based on the same metamodel, they are available in different forms.
The protoype has to be alterable in such a way that these different forms can
be supported, thus making it process independent. Information on how this
problem has been handled can als be found in sec. 4.1.

3.2 Using Slicing Techniques with Process Models

In this section we want to show how program slicing techniques can be applied
to software development processes. First we define analogies in sec. 3.2.1 and
then we describe how a program slicing algorithm can be used with a process
model in sec. 3.2.2 on page 31.

3.2.1 Analogies between Programs and Process Models

Software development processes and computer programs obviously share some
common purposes. Both describe a strict sequence of actions that have to be
performed in a defined order.

Computer programs basically consist of control-related and data-related in-
structions. Control-Related instructions are everything that defines the flow

3.2 Using Slicing Techniques with Process Models 30

of a program; these can be loops, conditional statements, calls of self-defined
functions, and so on. Data-related is everything that deals with the storage of
values; these are, e.g., declarations and definitions of variables, assignments to
variables, and so forth.

Software development processes have a similar structure, although they are
much simpler. They describe the actions that have to be performed to achieve
a defined goal, which in most cases would be the completion of a successful
project. The actions are hierarchically structured (see sec. 2.1 on page 5 for
more information on process models). Concrete tasks—these are the smallest
units of actions—produce outcomes in the form of work products; other tasks
require these work products as input.

In contrast to programs, software development processes based on the Soft-
ware Process Engineering Metamodel (SPEM, see sec. 2.1.2 on page 7) lack
a lot of control-related parts. There are no conditional points in a process
model, where the process could proceed in different directions depending on
some criteria. And there are no loops which would repeat one and the same se-
quence of actions multiple times. In fact, the SPEM uses and defines iterations,
but these iterations are nothing that could be used in terms of a program’s
loops. The SPEM mentions an iteration as “composite WorkDefinition with
a minor milestone” [OMG, 2002]. This means that a process model may con-
tain similar sequences of actions with different goals. The SPEM specification
provides an example for such iterations from the DMR Macroscope process
model, where the phase “Preliminary Analysis” contains the iterations “First
Joint Requirements Planning (JRP) Workshop” and “Second Joint Require-
ments (JRP) Workshop”. Both iterations contain many common activities and
steps, but anyway, they differ slightly and are specified separately. This way
the typical advantages of loops—as we know them from programs—get lost.

The only control-related part that process models contain, is their definition
of the process flow. They define phases, activities, and so on. The smallest
pieces of process flow are activities (SPEM notation) or tasks (GSM notation,
which we use throughout this section). Tasks are very similar to a program’s
functions, because

• they do a small and manageable piece of work,

• they often need some input so that they can do their work,

• and in many cases they produce some output.

3.2 Using Slicing Techniques with Process Models 31

Data-related parts of a program are everything that has something to do with
variables. Variables store different kinds of information, provide the ability to
modify their content, and transport information throughout the whole program.
Software development processes possess something with similar characteristics,
namely work products. As described in sec. 2.1 on page 5, work products can
be documents, source code, diagrams, and so on. These work products also
store some kind of information, transport it through the whole process, and
provide the ability of their content to be changed.

This led us to the following analogies between programs and software develop-
ment processes:

• Both describe a strict sequence of actions

• Tasks are similar to functions

• Work products are similar to variables

With this analogies defined and the restrictions of process models in mind, we
could say that a software development process is a very simple straightforward
program without branching, loops, recursions, or any analogical constructs.

In a software development process, work products appear in two different kinds,
as there are input work products and output work products. Input work prod-
ucts are the input of a task. This means that the task needs the work products
in order to be performed, resulting in input work products being like input
parameters of a program’s functions. Output work products contain the result
of what the task does. Therefore, output work products are like a function’s
output parameters or return value. Sometimes a work product appears as in-
put and output of one task. This means that the task presumably modifies the
content of the work product and can be compared to a function with pass-by-
reference parameters.

3.2.2 An Adapted Algorithm

Modern program slicing deals with challenges of today’s programming lan-
guages. As described in sec. 3.2.1 on page 29, software development processes
are not that complex. Therefore, we decided to take the data-flow-based algo-
rithm described in sec. 2.2.5 on page 20 as starting basis. This algorithm uses a
control flow graph of the program for computing slices. In our case the process
model can be seen as simple program, thus we need not compute a control flow

3.2 Using Slicing Techniques with Process Models 32

Task T1 ↓WP A, ↓WP B, ↑WP A, ↑WP C

Task T2 ↓WP A, ↓WP C, ↑WP C

Task T3 ↓WP C, ↑WP X, ↑WP F

Task T4 ↓WP F, ↑WP A

Task T5 ↓WP C

Task T6 ↓WP C, ↑WP Y

Task T7 ↓WP F, ↑WP F, ↑WP X

Task T8 ↓WP Y, ↑WP D, ↑WP E

Task T9 ↓WP E, ↑WP G

Task T10 ↓WP C, ↑WP K

Table 3.1: This is a simplified part of a process model. The tasks T1–T10
appear in the given order. Work products (WP) are marked as input (↓) or
output (↑).

graph because we already know the control flow of the process. It starts with
the first task and works its way right through the process until the last task is
reached.

Anyway, the computation of one slice can result in different slices because the
process model may be in various tailoring states. The removal and adding of
tasks and work products influence the computed slices.

With the algorithm described in sec. 2.2.5 on page 20 we can compute backward
slices for a given task and work product in a very simple way. The backward
slice contains all tasks that produce the work products which can influence the
selected task. Additionaly we are interested in a forward slice, which shows
us all the tasks that can be influenced by the selected task. This goal can be
achieved with a similar computation. And finally we do not only want to receive
a simple slice from our algorithm, we also want to know detailed dependences
between work products. Let us take a part of a simplified software development
process as example (see table 3.1) and develop the algorithm step by step.

First we use the base algorithm to compute a backward slice for task T5 and
work product C. The algorithm does not need to be changed for this task. We
simply changed the “program terms” to “process terms”. The algorithm has
the following four steps (assumed that we want to compute a slice for task T

and work product P):

1. Initialize the relevant sets of all tasks to the empty set.

3.2 Using Slicing Techniques with Process Models 33

2. Insert work product P into the relevant set of task T.

3. For T’s immediate predecessor S, compute the relevant set as:

a) relevant(S) = relevant(T) - def(S)

b) if relevant(T) ∩ def(S) 6= {} then

c) relevant(S) = relevant(S) ∪ ref(S)

d) include S into slice

e) end

4. Work backwards in the process, repeating step 3 for S’s immediate pre-
decessors until the first task is reached or the relevant set is empty.

Table 3.2 on the following page shows the result of computing the backward
slice for task T5 and work product C. First of all—in terms of program slicing—
the defined and referenced sets have to be computed. In fact, we do not need
to compute anything here, because we know this information directly from the
process model. The output work products are the work products a task defines
and the input work products are the work products a task references. The
next step is to insert work product C into the relevant set of task T5. Then we
compute the relevant set for T5’s predecessor T4. The relevant work products
of T4 are the relevant work products of T5 (=C) without the work products
T4 defines. T4 defines work product A, so the relevant set of T4 is C. Because
the intersection of T5’s relevant set and T4’s defined set is the empty set, T4
does not become part of the slice. This means that T4 does not define anything
which would be relevant for T5, so T4 is not important. In the next iteration,
the relevant set of T3 is set to C, too. Then T2’s relevant set is set to the empty
set, because T2 defines C and C is the only content of T3’s relevant set. The
intersection of T3’s relevant set and T2’s defined set is not the empty set (it
contains C), so the referenced set of T2 (=A, C) is added to T2’s relevant set.
This means that T2 defines C and requires A and C to do that, thus A and C

become relevant for the slice. T2 is added to the slice because it is important.
In the last iteration T1 is handled in the same way and therefore also added to
the slice.

This way we can compute a backward slice which contains all tasks that are
important for task T5. Additionaly we are also interested in how the relevant
work products depend on each other, because this can be valueable information
for the user of our tailoring tool. To take work product dependences into
account, we need to modify the algorithm so that it can build up a dependence
tree. In step 1 the selected work product C has to be added to the dependence

3.2 Using Slicing Techniques with Process Models 34

def. ref. rel.
⇒ Task T1 ↓WP A, ↓WP B, ↑WP A, ↑WP C A, C A, B A, B
⇒ Task T2 ↓WP A, ↓WP C, ↑WP C C A, C A, C

Task T3 ↓WP C, ↑WP X, ↑WP F X, F C C

Task T4 ↓WP F, ↑WP A A F C

⇒ Task T5 ↓WP C C C

Table 3.2: This is the result of computing a backward slice for task T5 and
work product C. All tasks that are part of the slice have an arrow (⇒) in front
of them. The three columns show the defined, referenced, and relevant work
products of each task.

C

A

B

Figure 3.1: Work product dependence tree for work product C from task T5

backward.

tree and step 3 has to be extended by an additional operation inside its if

statement:

3.e) add the work products of S’s defined set to the dependence tree, so that
the work products of T’s relevant set depend on them. Dependences which
would lead to self-dependence relations are not inserted.

With this extension a work product dependence tree for our backward slice can
be computed. Figure 3.1 shows the structure of this dependence tree. Node C

is the starting point of the tree. Arrows point from the “master work product”
to the one which depends on it. In task T2 A and C are referenced and C is
defined. So C becomes dependent on A and C. Since it does not make any sense
that C would depend on its own, this dependence can be ignored and only the
dependence on A is added to the tree. In task T1 A and C are defined and A and
B are referenced. So, for both A and C the two referenced work products A and B

have to be inserted as “master work products”. A and C become dependent on
B. All other dependences are ignored because they are either self-dependences
or already part of the tree.

3.2 Using Slicing Techniques with Process Models 35

At this point we have computed a backward slice containing all tasks that
influence T5 and a dependence tree with information on how the work products,
which are important in the context of the slice, depend on each other. Now we
are interested in a forward slice that shows us which of the tasks T6–T10 can be
influenced by T5. This slice can be computed with a similar technique as the
backward slice was. Additionally, we can build up a dependence tree for work
product dependences again. The algorithm for computing the forward slice and
the work product dependence tree works as follows.

1. Initialize the relevant sets of all tasks to the empty set. Insert P into the
dependence tree.

2. Insert work product P into the relevant set of task T.

3. For T’s immediate successor U, compute the relevant set as:

a) relevant(U) = relevant(T)

b) if relevant(U) ∩ ref(U) 6= {} then

c) relevant(U) = relevant(U) ∪ def(U)

d) include U into slice

e) add the work products of U’s defined set to the dependence tree,
so that the work products of U’s referenced set depend on them.
Dependences which would lead to self-dependence relations are
not inserted.

f) end

4. Work forwards in the process, repeating step 3 for U’s immediate succes-
sors until the last task is reached.

The explanation of this algorithm is easy to understand. At each task, we verify
if the task references a work product which appears in the relevant set. If this
happens, the task is added to the slice and the work products of the task’s
defined set are added to the relevant set. In this way all work products that
can be influenced by work product P are added to the relevant set. Depending
on the process structure a slice can become pretty large, but anyway, the result
is always precise because all dependences are taken into account.

Table 3.3 on the following page shows how this algorithm is used to compute a
forward slice for task T5 and work product C of our example process. Figure 3.2
on the next page illustrates the resulting work product dependence tree.

3.3 The Application 36

def. ref. rel.
⇒ Task T5 ↓WP C C C

⇒ Task T6 ↓WP C, ↑WP Y Y C C, Y
Task T7 ↓WP F, ↑WP F, ↑WP X F, X F C, Y

⇒ Task T8 ↓WP Y, ↑WP D, ↑WP E D, E Y C, Y, D, E
⇒ Task T9 ↓WP E, ↑WP G G E C, Y, D, E, G
⇒ Task T10 ↓WP C, ↑WP K K C C, Y, D, E, G, K

Table 3.3: This table shows the result of computing a forward slice for task
T5 and work product C. All tasks that are part of the slice have an arrow (⇒)
in front of them. The three columns show the defined, referenced, and relevant
work products of each task.

C

Y K

D E

G

Figure 3.2: Work product dependence tree for work product C from task T5

forward.

It is now possible to compute backward and forward slices of a process model.
The two work product dependence trees computed by the forward and backward
slicing algorithms could also be combined; this would result in a full dependence
tree of one work product. The example showed a simple process model part
which did not contain complex data dependences. For example, there could
also occur circular dependences of work products. Such dependences can also
be computed with the methods we have shown in this section.

3.3 The Application

This section makes up a short introduction to the prototype application. It
shows what the prototype does and in which context it works, thus with which
entities it interacts.

3.3 The Application 37

WebSphere Application Server
+ WebSphere Portal Server

+ IBM HTTP Server

Database containing
process model

content

Database for Portal
Server data

Web Client Web Client

HTTP

Server

Database

Clients

Figure 3.3: Architecture overview of the prototype.

3.3 The Application 38

3.3.1 Architecture Overview

The prototype is a portal-based application. It solely works on a portal server
which itself is usually based on an application server. In our case we use IBM’s
WebSphere Portal Server which is an extension to the WebSphere application
server. The content of the Global Services Method is available in a database. In
general, the prototype could also be adapted to software development processes
which are not available in databases. A second database is used by the portal
server for storing persistent data, configuration settings, and so on. Clients
can access the prototype application through web browsers. On client side
there is absolutely no domain logic, so all the “work” is done on the central
server. Figure 3.3 on the preceding page provides an architecture overview of
the prototype.

3.3.2 Functionalities

The functionalities of the prototype are:

• Browsing the process model’s content

• Managing projects

– Creating projects

– Deleting projects

• Managing collaborators

– Creating collaborators

– Deleting collaborators

– Assigning collaborators to projects

– Assigning collaborators to roles within projects

• Tailoring tasks

– Including tasks into projects

– Excluding tasks from projects

– Compensating tasks

• Tailoring work products

– Including work products into projects

– Excluding work products from projects

3.3 The Application 39

– Compensating work products

• Exporting tailoring results

Tasks and work products can be “compensated”. The idea behind this is to
reduce the complexity of big process models in small projects by reducing the
number of elements that have to be handled. A task can compensate one or
more other tasks which means that it additionally does what the other tasks
would do. The result is that the input work products of all compensated tasks
become input work products of the compensating task, the output work prod-
ucts of all compensated tasks become output work products of the compen-
sating task, and all roles appearing in the compensated tasks become roles of
the compensating task. In terms of work products compensation means that
one work product can be replaced by others, or that one work product includes
the content of other work products. This way the number of tasks and work
products can be decreased without loosing content. In small projects with few
collaborators this can reduce the overhead of managing a lot of tasks and work
products without completely renouncing them.

Chapter 4

Implementation of the

Prototype

In this chapter we want to take a closer look at the prototype. Our goal was to
develop a prototype which fulfills the requirements defined in sec. 3.1 on page 27.
Section 4.1 describes the prototype’s design in a detailed way. Section 4.2
on page 57 then shows how the prototype has been tested and points out its
strengths.

4.1 Design

Section 4.1.1 shortly describes the first attempts and the problems that oc-
curred. In sec. 4.1.2 on the next page we then give some background infor-
mation about things that influenced the design. Afterwards sec. 4.1.3 on the
following page shows an example of how the GUI was designed. Then we take
a look at the design of the tailoring extension of the database in sec. 4.1.4 on
page 43. An overview of the application design is given in sec. 4.1.5 on page 45,
followed by detailed application design topics in sec. 4.1.6 on page 49.

4.1.1 First Attempts

Creating a good design for the prototype took some time. The main problem
was that when I1 started to work on the prototype, I did not know much about
the Global Services Method. And I have to confess that I underestimated the

1I use the first person here, because this represents my own opinion and experience.

4.1 Design 41

complexity of such a big development process a bit. The result was that I did
not spend enough time on thinking about a good design of the application at
the beginning of my work. Later I had to completely reengineer the design in
order to fulfill the requirements.

The first version of the design was somewhat conservative, resulting in a few
classes with many static methods and bad object-orientation. For the beginning
this was satisfactory, but later things got too complex and the whole application
was really inflexible. After I knew the disadvantages of this first version it was
at least easier to develop a better design for further development.

4.1.2 Background Information

The design of the prototype is especially influenced by the database design of
the Global Services Method and the fact that the application has to be web-
based.

Tailoring the Global Services Method (GSM) is the main function of the proto-
type. In order to do this, the application has to use a lot of the GSM’s content,
which is available in a database. The whole content and coherences are defined
in this database, thus making the application very database-intensive. The
GSM’s database contains about 40–50 tables; approximately 15 of them are
of interest for our work. We cannot explain details about the database here,
because it is classified confidential by IBM. Regardless of this, knowing details
about the database should not be essential to understand the design, although,
of course, it would be interesting.

The web-based approach leads to a request- and response-based communica-
tion. The server cannot keep tailoring information about different projects in
memory, because this would lead to additional problems. For example, depend-
ing on the number of projects, this would result in too high memory load at
the server. So the current tailoring state is always stored in the database and
the server loads the required data on each request. That sounds time extensive,
but tests showed that—provided that a good database is used—the prototype
has really good response times, even if a lot of database accesses are required
for one request.

4.1.3 Graphical User Interface

As the prototype is portal-based, we use portlets to build up the webpages (see
sec. 2.3.3 on page 23 for background information on portlets). Creating good-

4.1 Design 42

Portal Navigation

Project Selection

Restriction by
Phases

Restriction by
Roles

Task’s
Dependences

Compensation
Information

Tasks

Figure 4.1: Typical design of a portal page. The outer box marks the browser
window and the rectangles inside symbolize the portal page’s portlets.

looking webpages with a portal server is not that difficult, because the server
defines layout rules (font sizes, link colors, text colors, navigation layout, etc.);
this guarantees that the whole webpage looks fine and the programmer does
not need to care about such details. Later the user can select his or her favorite
out of different layout schemes.

Building up the webpages with portlets results in well-structured and clear
webpages. Figure 4.1 shows how one of the webpages is made up of various
portlets. The uppermost box labeled “Portal Navigation” is provided by the
portal server. The other boxes represent five portlets that have been placed on
this page. The subject of this page is to manage the tasks of a project. Its
layout is typical for the prototype, as some of the other pages are composed in
a similar way.

Let us take a look at how this page operates. The portlet named “Project
Selection” allows the user to select the project he or she wants to work on.
Each project is bound to an engagement model (see sec. 2.1.4 on page 11 for
an explanation of the GSM and its terms), thus, selecting a project also defines

4.1 Design 43

the process that lies behind it. When the user selects a project, all the other
portlets show data that belongs to the selected project. The most important
portlet on this page is the “Tasks” portlet, which has several functionalities; it
can be used to include tasks in the project, exclude tasks from the project, and
compensate (see sec. 4.1.4) tasks by other tasks. Additionally it uses different
colors to indicate extra information about the tasks. The two portlets “Phases”
and “Roles” can be used to restrict the shown tasks; this is useful if the current
engagement model is very large, and showing all tasks at once would be too
complex. Restriction by phase means that only the tasks which appear in the
selected phase are shown. Restriction by role means that the user can select
a role (e.g., System Analyst) and the portlet “Tasks” then only shows tasks
which are done by this selected role. Of course, these restrictions can also be
combined. If the user selects a task in the “Tasks” portlet, the “Task’s Depen-
dences” portlet will show all dependences of this task by computing slices for
the task and all of its work products. As the name implies, the “Compensa-
tion Information” portlet additionally shows compensation information for the
selected task.

4.1.4 Database Design of the Tailoring Extension

We had access to a database containing the contents of the Global Services
Method. From our point of view, these tables are static and cannot be changed
by our prototype, however, in reality the tables can change; e.g., if a new version
of the GSM is released, the database will have to be updated. The prototype
provides the functionality to create projects (based on engagement models of
the GSM) and tailor the process to the user’s needs.

The data concerning the current tailoring state of a project has to be stored
in a database by the prototype. Figure 4.2 on the following page shows a dia-
gram of this database extension. The shown database tables have the following
functionalities.

Project Every project that is created is stored in this table. It has a name by
which the user can identify it, a reference to the engagement model of the
Global Services Method, and the ID of the portal user who created the
project. The ID of the user who created the project can be used to show
only a user’s own projects in the “Project Selection” portlet.

Collaborator Collaborators can be stored in this table; they are independent
of a specific project and are managed separately. Collaborators can be
assigned to projects and roles.

4.1 Design 44

project_id: integer (PK)
name: varchar(60)
model_method_id: character(50)
wpsuser_id: varchar(30)

Project

coll_id: integer (PK)
coll_name: varchar(80)

Collaborator

project_id: integer (PK)
coll_id: integer (PK)

Collaborator_Project

coll_id: integer (PK)
role_id: integer (PK)

Collaborator_Role

id: integer (PK)
project_id: integer
included: integer
proc_id: integer
parent_id: integer

Project_Task

id: integer (PK)
project_id: integer
included: integer
proc_id: integer

Project_WPD

id: integer (PK)
project_id: integer
included: integer
proc_id: integer

Project_Role

id: integer (PK)
compensate_id: integer (PK)

Compensate_Task

id: integer (PK)
compensate_id: integer (PK)

Compensate_WPD

Figure 4.2: Database extension for storing tailoring information.

4.1 Design 45

Collaborator Project This is an associative table which connects collabora-
tors and projects. One collaborator can take part in many projects and
one project can have many collaborators.

Project Role This table creates a connection between a project and a role of
the Global Services Method, thus it represents a role in a specific project.
The Project Role table stores information about whether the role is in-
cluded in the project or not, because the user of the tailoring tool can
decide to remove roles from a project.

Project WPD Like the Project Role table, the Project WPD table also cre-
ates a connection to the Global Services method; it connects projects and
work products. As the user can include and exclude work products, this
table also has to store this information.

Compensate WPD Work products can be compensated by other work prod-
ucts. The idea behind this compensation is that one work product can
be replaced by others, or that one work product includes what originally
would be part of a separate work product (see sec. 3.3.2 on page 38).
This can be helpful in small projects to keep the number of work prod-
ucts manageable.

Project Task This table connects projects with tasks of the Global Services
Method. Again, tasks can be included and excluded by the user. This
table needs additional information about the parent of each task in or-
der to clearly identify each task; the parents of tasks are activities in the
Global Services Method. The information about a task’s parent is neces-
sary, because a task—identified by one unique ID—can occur in multiple
activities and we want to be able to exclude and include each single task
separately.

Compensate Task Like work products, tasks can also be compensated. In
terms of tasks this means that one task can take on the work which would
originally be done by another task (see sec. 3.3.2 on page 38).

4.1.5 Application Design Overview

In this section we want to discuss the high-level design of the prototype. Fig-
ure 4.3 on page 47 shows the three main layers presentation, domain logic, and
data access with a few sample classes. In sec. 4.1.6 on page 49 we take a closer
look at each of the three layers and describe their interior structure.

4.1 Design 46

The presentation layer contains classes for all portlets plus JSPs to build the
HTML output of the portlets. MethodSlicerPortlet is the common base class
of all portlet classes; it contains some common functionalities like sending mes-
sages to other portlets and showing help texts for portlets. Sending messages is
supported by the portal server, but we simplified it a bit by providing one single
method in the MethodSlicerPortlet super class. The super class additionally
supports sending messages with more than one value as content.

Portlet classes are similar to servlet classes; they provide methods for gener-
ating content, handling parameters that come with requests, and so on. The
actionPerformed method of a portlet class is usually the place where a compu-
tation at server side starts. For example, the user has selected an engagement
model for browsing it. The portlet class then stores information about the se-
lected engagement model in the user’s session. Then the portal server builds
up the next HTML page for the client, thus the doView methods of all portlets,
which are on the page, are called and the content is put together. Each portlet
then accesses the domain logic and data access layers to generate the content
that it has to show. The portlet class itself only initiates these computations,
but the most work is done in the domain logic layer. Portlet classes prepare the
data, which has to be shown, and use JSPs to generate the HTML output. The
JSPs themselves use objects of the domain logic layer, but they never access
the data access layer.

The domain logic layer contains several classes that represent the data of the
Global Services Method and some classes for tailoring purposes. All compu-
tations are done in this layer; it comprises the whole logic of the prototype.
Classes of the domain logic layer never access anything of the presentation
layer. They only use the data access layer to get data out of the database or to
store information. Our domain logic layer is based on the ideas of the Domain
Model pattern described in [Fowler, 2003]. It is a rich domain model which
differs from the database design and therefore does not use any Enterprise Java
Beans. The domain logic layer exclusively uses POJOs2 to model the Domain
Model. The main reason for this is that an EJB-based approach would not have
provided us with any advantages. However, the POJO-based domain model has
advantages; Fowler describes some of them in [Fowler, 2003]:

A POJO domain model is easy to put together, is quick to build,
can run and test outside an EJB container, and is independent of

2Martin Fowler found out that “normal” Java objects did not have a defined name while

he was preparing for a talk in 2000. Therefore, Fowler, R. Parsons, and J. Mackenzie decided

to give them one: POJOs (plain old Java objects) [Fowler, 2003].

4.1 Design 47

Presentation

+doView()
+actionPerformed()
+...()

EngModelSelectorPortlet

EngModelSelector.jsp

Domain Logic

+getID()
+getName()
+...()

-modelName
-...

EngModel

Data Access

+getConnection()
+...()

GSMDatabase

+findEngModel()
+...()

EngModelMapper

+closeSQLObjects()
+...()

Mapper

ConnectionPool +getEngModel()
+...()

GSMIdentityMap

+sendMessageToPortlets()
+splitMessage()
+decodeMessage()

MethodSlicerPortlet

Figure 4.3: This is a coarse design overview of the prototype.

4.1 Design 48

EJB (maybe that’s why EJB vendors don’t encourage you to use
them).

And some paragraphs later he hits the mark:

The biggest frustration for me with the use of EJB is that I find a
rich Domain Model complicated enough to deal with, and I want to
keep as independent as possible from the details of the implemen-
tation environment. EJB forces itself into your thinking about the
Domain Model, which means that I have to worry about both the
domain model and the EJB environment.

Apart from the fact that the Global Services Method’s database is too complex
for modeling the Domain Model with entity beans, this was another reason why
we did not spend our time on EJBs.

The data access layer is responsible for providing access to the data of the
database. In the first version of the prototype’s design, the data access layer
was pretty chaotic, because it just grew as needed and was not consistent. Even
classes of the domain logic layer sometimes accessed the database directly.

The current data access layer design is smarter, easier to maintain and ex-
tend, and faster than the old one. It is mainly based on the Data Mapper,
Identity Map and Lazy Load design patterns explained in [Fowler, 2003]. In
[Fowler, 2003] Martin Fowler explains:

The Data Mapper is a layer of software that separates the in-memory
objects from the database. Its responsibility is to transfer data
between the two and also to isolate them from each other. With
Data Mapper the in-memory objects needn’t know even that there’s
a database present; they need no SQL interface code, and certainly
no knowledge of the database schema.

This results in the big and important advantage that the domain logic layer
does not need to know anything about how and where the data of the process
is stored. For our prototype it means that switching to another process model
(e.g., the Rational Unified Process) mainly requires adapting the mapper classes
which map domain objects to the database. In fact, it is not even necessary to
use a database, because the mappers could also read and write data from and
to file streams or any other storage.

4.1 Design 49

Identity Maps additionally support the data access layer. Fowler gives an amus-
ing introduction to Identity Maps in [Fowler, 2003]:

An old proverb says that a man with two watches never knows
what time it is. If two watches are confusing, you can get in an even
bigger mess with loading objects from a database. If you aren’t
careful you can load the data from the same database record into
two different objects. Then, when you update them both you’ll
have an interesting time writing the changes out to the database
correctly.

Related to this is an obvious performance problem. If you load the
same data more than once you’re incurring an expensive cost in
remote calls. Thus, not loading the same data twice doesn’t just
help correctness, but can also speed up your application.

For the prototype, the usage of Identity Maps brings amazing perfomance in-
creases. Especially the Global Services Method content, which never changes,
is loaded from the database step by step—depending on what the actual client
requests demand—until nearly everything is kept in memory as objects. Iden-
tity Maps store references to all loaded objects in HashMaps, resulting in very
fast access times. For example, let us take a look at how objects from the
presentation and domain logic layers get a reference to an EngModel object.
They use the EngModelMapper’s findEngModel method to retrieve the desired
reference and need not care about where the mapper gets the object from.
The EngModelMapper itself first requests a reference to the object from the
GSMIdentityMap. If there is no success, the EngModelMapper loads the required
data from the database, creates a new EngModel object, stores the reference in
the identity map for future requests, and returns a reference to the caller.

In many classes of the prototype we used a Lazy Load design pattern to further
improve performance. Lazy Load means that data is only loaded when it is
needed. For example, if you request an EngModel object from the accordant
mapper class, only the information about the engagement model is loaded (its
name, etc.). Without Lazy Load the content of the whole engagement model
would be loaded, thus, hundreds of other objects would be created, even if they
are never used.

4.1.6 Application Design Details

In this section we take a closer look at the three layers we introduced in sec. 4.1.5
on page 45.

4.1 Design 50

Presentation Layer

The presentation layer is straightforward. Each portlet is represented by a
portlet class and uses its own JSP for generating output. As shown in fig. 4.3
on page 47, all of the portlet classes extend the MethodSlicerPortlet base
class, which provides some common functionality. We did not include a figure
of the complete presentation layer, because all the classes look alike.

Domain Logic Layer

The domain logic layer can be divided into two parts: the first one deals with
the content of the Global Services Method and the second one deals with the
process model’s tailoring.

Figure 4.4 on page 52 illustrates the first part of the domain logic layer. Let us
take a look at each of these classes separately:

ProcessElement This abstract class plays a central role, because most of the
other classes extend it. The structure is based on a Composite design
pattern [Gamma et al., 1995]. EngModel, Phase, Activity, Task, Role,
and WorkProduct are all “process elements”. The ProcessElement class
has a ProcessElement array as instance field, thus a hierarchical structure
is defined, like the process model describes it. One of the advantages of
this approach is that the structure becomes flexibel.

ProcessElementComparator Objects of this class can be used as comparators
when ProcessElement objects have to be sorted. There are two ways
of creating ProcessElementComparator objects: the first is to use the
default constructor which creates a comparator for alphabetical ordering,
and the second one requires a ProcessElement object as parameter and
can be used to sort the elements in the order they appear inside the
specified ProcessElement.

For example, if you create a ProcessElementComparator with phase P

as parameter, you can use it to sort elements—in this case it would only
make sense for Activity objects—so that they appear in the right order.

EngModel This is the top of the hierarchical structure.

Phase Represents a phase of the process model.

Activity Represents an activity of the process model.

4.1 Design 51

Task The class Task plays a special role; objects of this class are the smallest
pieces of work that occur in the process model. Therefore, Task objects
differ from the higher-level elements (EngModel, Phase, and Activity).
Task objects have two kinds of children: WorkProduct objects, which
represent the work products that occur in the task, and Role objects,
which represent the roles that perform the task.

WorkProduct Objects of this class represent the work products of the process
model. They are process elements, because they are part of the hierarchi-
cal structure. Additionally, they store extra information about whether
they are input, output, or input and output in the tasks they occur in.
Different from most other process elements (except Roles) WorkProduct

objects are divided into various domains.

Role Role objects represent the roles of the process model. Like WorkProduct

objects, they belong to domains, too.

Domain Objects of this class represent the domains of a process model. In the
case of the Global Services Method there are six big domains (e.g., “Ap-
plication”). The domains are themselves subdivided into sub-domains,
but we did not take these sub-domains into account.

As decribed above, ProcessElement plays an important role in the process
structure. In fact, most operations are directly handled in this class. Classes
of the types EngModel, Phase, and Activity would nearly be unnecessary; the
only functionality they have is that the design becomes more understandable,
e.g., when an EngModel object is requested, the EngModelMapper class is used
to create or find it. Anyway, in general it should be no problem to drop the
three classes, and handle the process structure in ProcessElement only.

An example of the advantages gained from the ProcessElement-based structure
is the following. The ProcessElement class has a method to get its sub-elements
(getSubElements()). This method works straightforward, it simply returns the
direct sub-elements of the ProcessElement object it is called for. Additionally,
ProcessElement has a method getSubElements(int type), which returns all
sub-elements of a particular type (e.g., EngModel, Phase, etc.).

Figure 4.5 on page 53 shows the getSubElements method. The public method
can be called in order to retrieve a Vector containing all the desired elements.
Internally a TreeSet is used to store the process elements; this has the ad-
vantage that it is fast, the elements are sorted by name (an object of type
ProcessElementComparator is used for that), and multiple occurrences of one

4.1 Design 52

+getPhases()
+findSubElements()

EngModel

+getSubElements()
+buildWBS()
+findSubElements()

-type
-name
-subElements

ProcessElement

+compare()

ProcessElementComparator

+getActivities()
+findSubElements()

Phase

+getTasks()
+findSubElements()

Activity

+getWorkProducts()
+containsRole()
+buildWBS()
+findSubElements()

Task

+getDomain()
+findSubElements()
+isInput()
+isOutput()
+isPartOf()

-domain
-tasks

WorkProduct

-name
-id

Domain

-domain
Role

1

1..*

0..*

0..*

0..*

0..*

Figure 4.4: The part of the domain logic layer which models the content of the
process model. The figure does not contain all fields and methods of the classes.

4.1 Design 53

public Vector getSubElements(int type) {

TreeSet tmpSet =

new TreeSet(new ProcessElementComparator());

getSubElements(type, tmpSet);

if(tmpSet.size() > 0)

return new Vector(tmpSet);

else

return null;

} // getSubElements

private void getSubElements(int type, TreeSet set) {

if(this.type == type)

set.add(this);

else {

ProcessElement[] subElems = getSubElements();

if(subElems != null)

for(int i = 0; i < subElems.length; i++)

subElems[i].getSubElements(type, set);

} // else

} // getSubElements

Figure 4.5: Method getSubElements of the class ProcessElement. It recur-
sively finds all sub elements of the defined type.

4.1 Design 54

element are ignored. The private getSubElements method then recursively
searches for the specified element type and adds all occurrences to the TreeSet.

As these two methods take advantage of the ProcessElement-based data struc-
ture, a lot of different questions can be easily answered with their help. For
example, you can call getSubElements(TASK) on an EngModel object to re-
trieve all tasks that occur in this engagement model. Another example would
be to call getSubElements(ROLE) on a Phase object; this would result in a list
containing all roles that occur in the given phase.

The second part of the domain logic layer contains the functionality to tailor
process models; fig. 4.6 on the next page illustrates this part of the layer.
Objects of these classes represent the current state of the tailoring process. As
the content always changes, these objects are never kept in memory; instead,
they are created per request. Because of the easy database structure (cf. fig. 4.2
on page 44), the creation of these objects works fast enough to ensure good
response times of the system. The following describes the classes in detail:

Project An instance of this class represents a project which a user can create.
The object has references to Collaborator objects of collaborators that
take part in the project, and references to all ProjectRole, ProjectTask,
and ProjectWorkProduct objects of the roles, tasks, and work products
that occur in the engagement model the project is based on. A Project

object also has a reference to the EngModel object of its engagement
model, thus the whole content of the model is accessible by the Project

object.

Usually a Project object is first created, then something is changed,
and finally its state is written to the database again (by the accordant
ProjectMapper). Therefore, the Project object stores information about
all ProjectElements that changed (modifiedElements field).

ProjectElement This is the base class of all project-related elements. It con-
tains common functionality, e.g., information about whether the element
is part of the project or if the element compensates other elements.

Collaborator Represents a collaborator. Collaborators can be defined by the
user; they do not depend on specific projects. This means that one col-
laborator may take part in more than one project. Collaborators can
be assigned to roles; therefore, Collaborator objects have references to
ProjectRole objects.

ProjectRole Represents one specific role of the engagement model in a project.

4.1 Design 55

+includeCollaborator()
+removeCollaborator()
+...()

-collaborators
-roles
-tasks
-wpds
-model
-modifiedElements

Project

+doRole()
+removeRole()

-name
-roles
-...

Collaborator

+isIncluded()
+hasChanged()
+...()

-included
-compensates
-changed

ProjectElement

-role
ProjectRole

+getDependences()

-task
-parent

ProjectTask

+getDependences()
-workProduct
ProjectWorkProduct

0..*

0..* 0..*

0..*

0..*

Figure 4.6: This is the tailoring-relevant part of the domain logic layer. The
figure does not contain all fields and methods of the classes.

4.1 Design 56

Objects of this class have a reference to the Role object of the process
model.

ProjectTask An object of this class represents one specific task of the engage-
ment model. It has references to the Task object it represents and its
parent Activity object. This is important, because in the hierarchical
process structure one and the same task can occur in more than one ac-
tivity. Our prototype supports inclusion and exclusion of same tasks in
different activities separately.

The getDependences method uses adapted slicing methods to compute
a slice containing all dependences of the task. Section 3.2.2 on page 31
explains how slicing methods have been adapted and how the dependences
are computed.

ProjectWorkProduct Represents one specific work product of the engagement
model in a project. ProjectWorkProduct objects have references to the
WorkProduct objects they represent. Like ProjectTask objects, they also
use adapted slicing methods in their getDependences method in order to
compute dependences of the work product.

Data Access Layer

The data access layer contains mapper classes—based on the Data Mapper
design pattern described in [Fowler, 2003]— for all classes of the domain logic
layer. The mapper classes all look similar, so we do not show an extra figure
here. Section 4.1.5 on page 45 shows and discusses the structure of the data
access layer.

For example, let us take a look at the ProjectMapper class. It provides four
methods:

findProject(int id) This method can be used to get a reference to a project,
provided that the project’s ID is known. In most cases this method is used,
because normally we know which project we are interested in.

findAllProjects() This method returns a collection containing references to
all projects that exist in the database. This is useful for initial tasks, like
selecting a project.

storeProject(Project project) Stores the given project to the database.
The Project object’s modifiedElements field is used to update only
what has been changed.

4.2 Application Test and Usage 57

deleteProject(Project project) This method deletes a project. All data-
base entries of elements which belonged to the project are removed, too.

4.2 Application Test and Usage

Application Test

As the application is a prototype and time was rare, it was not tested sys-
tematically. We just informally defined some test cases with defined results
and manually proved whether the prototype worked correctly. Of course, there
would have been better ways of testing. Anyway, the prototype appeared to be
stable and delivered correct results in all tests.

Hardware Requirements

First of all, the prototype needs a functional installation of IBM’s WebSphere
Portal Server. This requires a computer with about one gigabyte of RAM and
a CPU faster than one GHz to function perfectly.

The prototype itself does not need many resources. The domain logic layer
requires approximately 25–30 megabyte of RAM, when it is in an advanced
state and has loaded nearly all data from the database. In relation to the one
gigabyte of RAM, which the server needs anyway, this should be no problem
at all. We developed and tested the prototype on a computer with an AMD
Athlon XP 2000+ (1666MHz) processor, where it performed quite fast and had
very good response times; thus, it should also satisfactorily run on computers
with slightly weaker CPUs.

Strengths

Our prototype has the following strengths:

• It has a flexible design, allowing it to be adapted to other software devel-
opment processes.

• It is based on a portal server, which improves the appearance of the
application and provides some useful functionalities.

• It is a good basis for further development.

Chapter 5

Conclusion

This last chapter reviews this thesis, shows application areas of our prototype,
and gives some ideas for possible future work.

5.1 Intention and Solution

The intention of this thesis was to create a tool for tailoring software develop-
ment processes with program slicing techniques. Therefore, analogies between
process models and software programs had to be found, a program slicing algo-
rithm had to be adapted to a software development process, and a prototype
of a tool for tailoring a process model had to be developed.

The result was that we found useful analogies between software development
processes and software programs, and defined them (see sec. 3.2.1 on page 29).
Afterwards, we adapted and extended a program slicing algorithm to fit our
needs (see sec. 3.2.2 on page 31). Finally, we designed and implemented a
prototype of a tailoring tool (see chap. 4 on page 40).

5.2 Advantages and Disadvantages

This section reviews some advantages and disadvantes of our work.

Advantages

• Our solution is based on a simple program slicing algorithm, which per-
fectly suits our requirements.

5.3 Application Area 59

• The prototype has a flexible design which allows it to be adapted to other
software development processes without too much effort.

• The prototype is portal-based; thus, it benefits from the portal’s func-
tionality.

Disadvantages

• A portal-based prototype also has disadvantages; for example, our proto-
type cannot operate without a portal server. If we wanted it to work on
its own, the whole presentation layer would have to be rewritten.

5.3 Application Area

Our prototype can be used for browsing and tailoring software development
processes based on the OMG’s Software Process Engineering Metamodel. We
used it on IBM’s Global Services Method; however, it is designed to be adapt-
able to any other process model.

A fully functional application based on our prototype would be a great tool for
supporting project managers in tailoring process models for their projects.

5.4 Future Work

Most parts of the prototype are finished. At its current state it can be used to
browse the Global Services Method, create and manage projects and collabora-
tors, and tailor tasks. What is missing is the part for handling work products
and a function to export the tailoring results in a form that can be used for
further processing.

The prototype could also be extended with more powerful program slicing al-
gorithms in order to compute dependences of process models containing more
control structures (like loops, etc.). Of course, this would only be theoretical
work, because the Software Process Engineering Metamodel currently does not
define such control structures; however, it might be interesting, too.

5.5 Availability of this Work 60

5.5 Availability of this Work

Visit “http://www.dietrichsteiner.com/gerhard/thesis” for downloading
this thesis. On this webpage, you will also find additional information on the
topic, interesting links, and maybe information about improvements and further
development of the prototype.

Bibliography

[Apache, 2003] The Apache Software Foundation. Jakarta JetSpeed.
http://jakarta.apache.org/jetspeed/site/, April 2003.

[Buckner et al., 2003] Ted Buckner, Stephan Hesmer, Peter Fischer und Ingo
Schuster. Portlet Development Guide, March 2003. Second Edition.

[Fowler, 2003] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Pearson Education, 2003. ISBN 0-321-12742-0.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson und John
Vlissides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Pearson Education, 1995. ISBN 0-201-63361-2.

[JCP, 2003a] The Java Community Process. JSR 162 Portlet API.
http://jcp.org/en/jsr/detail?id=162, April 2003a.

[JCP, 2003b] The Java Community Process. JSR 167 Java Portlet Specifica-
tion. http://jcp.org/en/jsr/detail?id=167, April 2003b.

[JCP, 2003c] The Java Community Process. JSR 168 Portlet Specification.
http://jcp.org/en/jsr/detail?id=168, April 2003c.

[Kruchten, 2000] Philippe Kruchten. The Rational Unified Process – An Intro-
duction. Addison-Wesley, second edition, 2000. ISBN 0-201-70710-1.

[OMG, 2002] Object Management Group. Soft-
ware Process Engineering Metamodel Specification.
http://www.omg.org/technology/documents/formal/spem.htm, No-
vember 2002. Version 1.0.

[SEI, 1995] Mark Paulk, Charles Weber, Bull Curtis und Mary Chrissis. The
Capability Maturity Model – Guidelines for Improving the Software Process.
Addison-Wesley Longman, 1995. ISBN 0-201-54664-7.

BIBLIOGRAPHY 62

[Steindl, 2000] Christoph Steindl. Program Slicing for Object-Oriented Pro-
gramming Languages. Dissertation, Johannes-Kepler-Universität Linz,
Universitätsverlag Rudolf Trauner, 2000. ISBN 3-85487-151-1.

[Weiser, 1984] Mark Weiser. Program Slicing. IEEE Transactions on Software
Engineering, July 1984.

